Les mobilités actives aujourd'hui et demain

Bénéfices sanitaires et climatiques

Pr. Jr. Santé et Changements Globaux

Le débat national sur les transports actif

Inactivité physique et santé

- Prévalence de l'inactivité physique dans les pays occidentaux:
 - >40% de la population adulte

Guthold et al, Lancet Glob Health 2018

- Fardeau sanitaire et économique en Europe
 - ~10% des décès toutes causes attribuables à l'inactivité physique Katzmarzyk et al, Br J Sports Med 2021
 - ~30% des dépenses directes de santé liées aux maladies non transmissibles Santos et al, Lancet Glob Health 2023

15/02/2022 — Expertise (3 mins

ALIMENTATION ET NUTRITION HUMAINE SANTÉ ET ENVIRONNEMENT

Manque d'activité physique et excès de sédentarité : une priorité de santé publique

C'est l'organisation même de nos modes de vies qui est à revoir : que ce soit dans l'espace public, en laissant davantage de place aux mobilités actives comme le vélo ou la marche, ou sur le lieu de travail, en favorisant la pratique sportive et en limitant les temps de sédentarité, ou encore dans le système scolaire en augmentant l'espace et le temps dédiés aux activités physiques et sportives

R IRÈNE MARGARITIS

CHEFFE DE L'UNITÉ D'ÉVALUATION DES RISQUES LIÉS À LA NUTRITION À L'ANSES

Deux informations préalables

Review

Health impact assessment of active transportation: A systematic review

Natalie Mueller ^{a.b.c.}, David Rojas-Rueda ^{a.b.c.}, Tom Cole-Hunter ^{a.b.c.}, Audrey de Nazelle ^d, Evi Dons ^{e.f.}, Regine Gerike ^g, Thomas Götschi ^h, Luc Int Panis ^{e.i}, Sonja Kahlmeier ^h, Mark Nieuwenhuijsen ^{a.b.c.}

La balance bénéfices-risques des transports actifs est très largement favorable

 Principalement portée par les bénéfices de l'activité physique JOURNAL ARTICLE

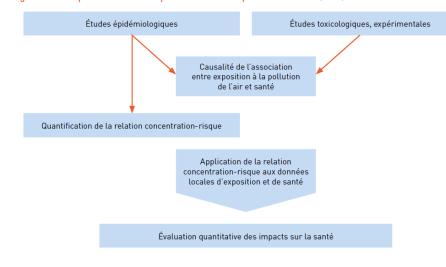
The Built Environment as a Determinant of Physical Activity: A Systematic Review of Longitudinal Studies and Natural Experiments ••

Mikko Kärmeniemi, MSc ☒, Tiina Lankila, PhD, Tiina Ikäheimo, PhD, Heli Koivumaa-Honkanen, PhD, Raija Korpelainen, PhD

Annals of Behavioral Medicine, Volume 52, Issue 3, March 2018, Pages 239–251,

En matière de transports actifs, les infrastructures induisent la demande

Les bénéfices du vélo en France, 2019


Cas d'étude: bénéfices sanitaires et climatiques de la pratique du vélo en France en 2019

(données: Enquête Mobilité des Personnes, 2019)

- Evaluation des bénéfices en termes de mortalité et morbidité
 - Mortalité toutes cause
 - 5 pathologies chroniques prises en compte
- Méthodologie: EQIS

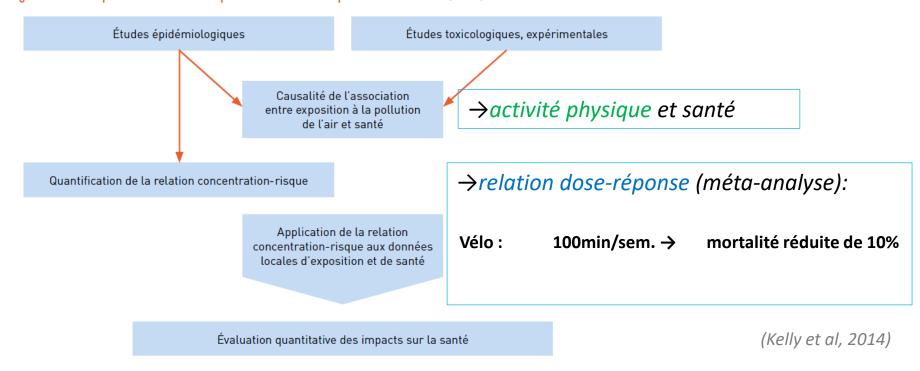
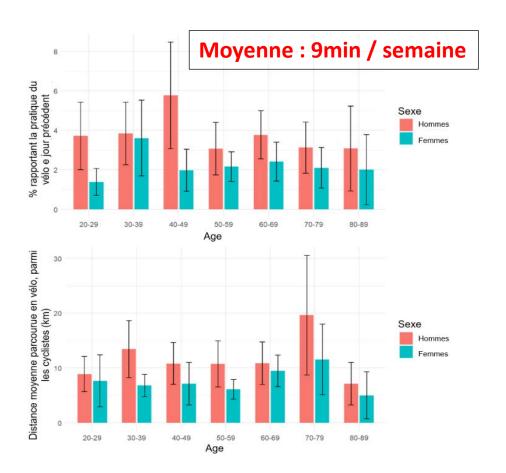


Figure 1 : Principe des évaluations quantitatives des impacts sur la santé (EQIS)



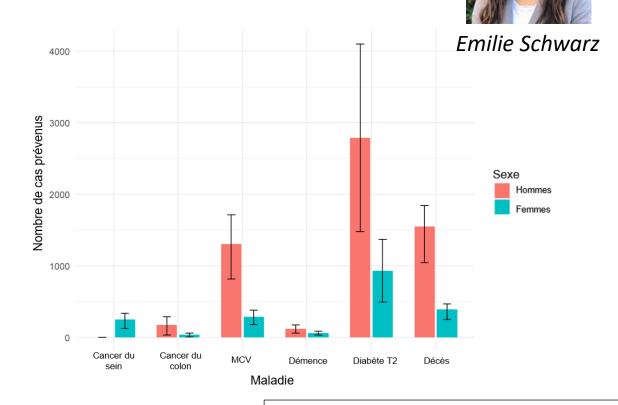

Méthodologie de l'EQIS

Figure 1 : Principe des évaluations quantitatives des impacts sur la santé (EQIS)

Distribution des pratiques et cas évités

1 919 (UI: 1101-2736) décès évités

5 963 (UI: 3178-8749) maladies

chroniques évitées

Des économies pour la société

- Pratiques du vélo au niveau de 2019:
 - ~200 millions € de dépenses directes de santé évités
 - ~5 milliards € de coûts sociaux de santé évitées

1 km parcouru à vélo = 1 € de coûts sociaux de santé évités

• Scénario modeste de report modal :

~2 000 décès évités en +

- 2,5 milliards € de coûts sociaux de santé évités en +
- 250 kTo de CO₂ évités

25% des trajets courts (<5km)

Présentation détaillée des résultats

THE LANCET Regional Health Europe

The untapped health and climate potential of cycling in France: a national assessment from individual travel data

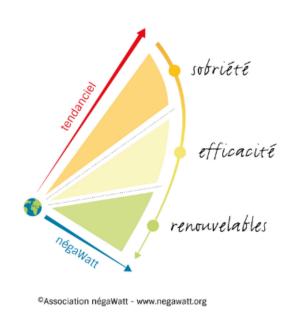
Emilie Schwarz • Marion Leroutier • Audrey De Nazelle • Philippe Quirion • Kévin Jean 🙎 🖂

Open Access • Published: February 29, 2024 • DOI: https://doi.org/10.1016/j.lanepe.2024.100874

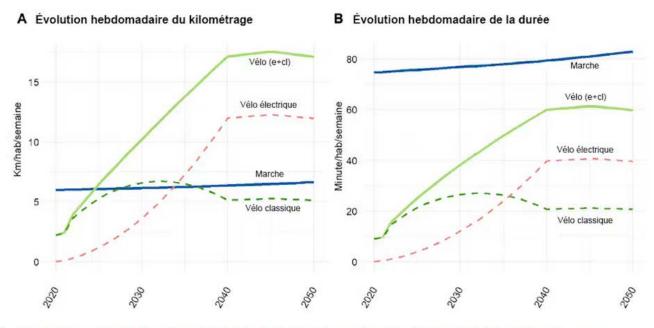
ACTUALITÉS
par Arancha Sánchez | Publié 6 mars 2024 - Mis à jour 7 mars 2024

Webinaire : Le potentiel inexploité du vélo pour la santé et le climat – Une analyse à partir de l'enquête « Mobilité des personnes 2019 »

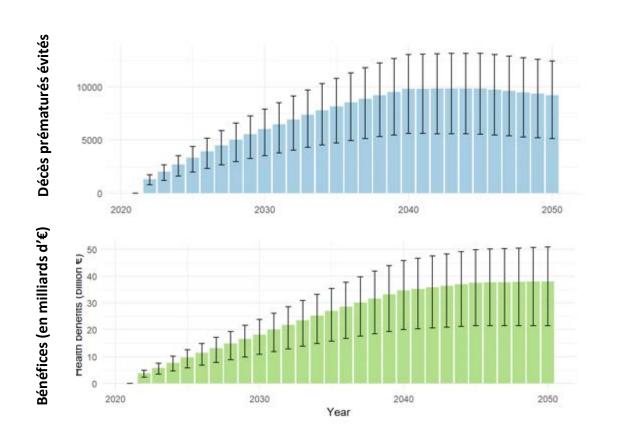
De 10h à 11h en ligne


Programme:

- Présentation des principaux résultats
- Questions-réponses avec les participants


Quels bénéfices dans une perspective de neutralité carbone ?

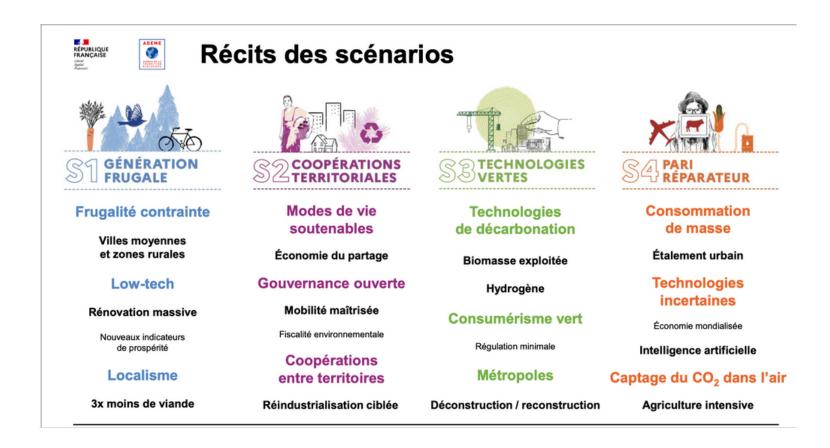
Pierre Barban



Le scénario négaWatt : un scénario crédible et cohérent de neutralité carbone à l'horizon 2050

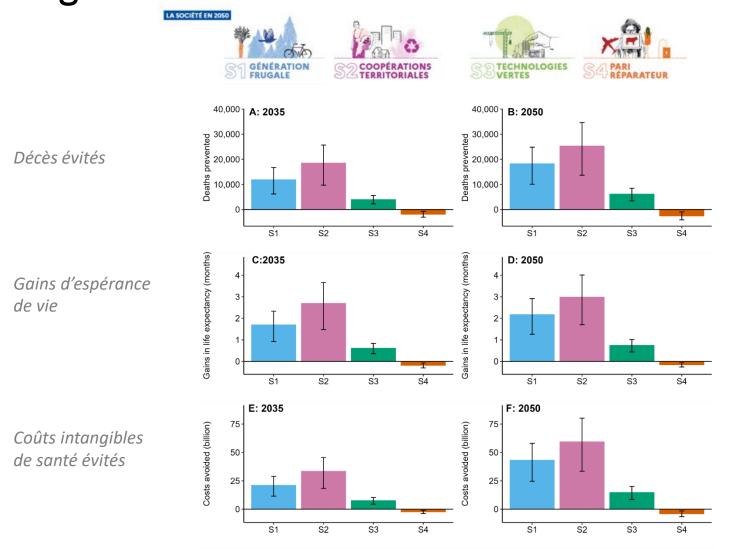
Évolution hebdomadaire du kilométrage (A) et de la durée (B) de la marche et du vélo. Le calcul de la durée se base sur une vitesse moyenne de 4,8 km/h (marche), 14,9 km/h (vélo) et 18,1 km/h (vélo électrique). Scénario négaWatt, France 2020-2050. K. Jean, Ph. Quirion, Negawatt, Author provided

Bénéfices sanitaires du scénario négaWatt


En 2040 : ~10,000 décès évités / an

Monétarisation des bénéfices sanitaires : ~35 milliards d'€ / an

Gain d'espérance de vie : >3 mois dans la population


Et avec des scénarios de transition contrastés?

Des trajectoires contrastées impliquent des impacts sanitaires

divergents

Léo Moutet

Moutet et al, medRxiv 2023

Prochaines étapes

 Etudier les multiples impactes de scénarios de neutralité carbone sur la santé

- Car tout ce qui est bon (ou presque) pour le climat est bon pour la santé
- Intégrer les enjeux de santé au cœur des débats sur la décarbonation

Santé et climat : 7 bonnes raisons de lutter contre le réchauffement climatique

12 October 2023

9 Comments

Tout ce qui est bon (ou presque) pour le climat est bon pour la santé

18 October 2023

12 Comments

THE CONVERSATION

9 juillet 2023

Nous sous-estimons les effets négatifs de la voiture sur la santé

Aurélien Bigo, École polytechnique et Kévin Jean, Conservatoire national des arts et métiers (CNAM)

La voiture est au centre de nos mobilités, ce qui limite l'usage des transports actifs,

tels que la marche ou le vélo. Une situation dont les impacts sanitaires dépassent la seule pollution de l'air.

4 septembre 2022

Marche, vélo : les gains sanitaires et économiques du développement des transports actifs en France

Kévin Jean, Conservatoire national des arts et métiers (CNAM) et Philippe Quirion, Centre national de la recherche scientifique (CNRS)

Développer l'usage du vélo et la marche est un atout pour le climat mais aussi en santé publique. Il est désormais possible de chiffrer les bénéfices envisageables : voici un scénario pour la France.

Merci pour votre attention

Bénéfices sanitaires des transports actifs

Des bénéfices sanitaires documentés dans des méta-analyses d'études épidémiologiques

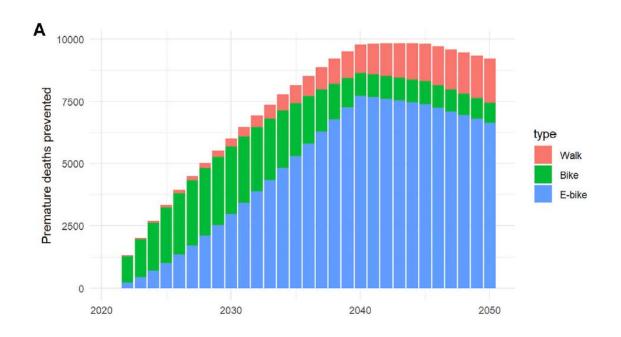
→ sur la mortalité toute cause:

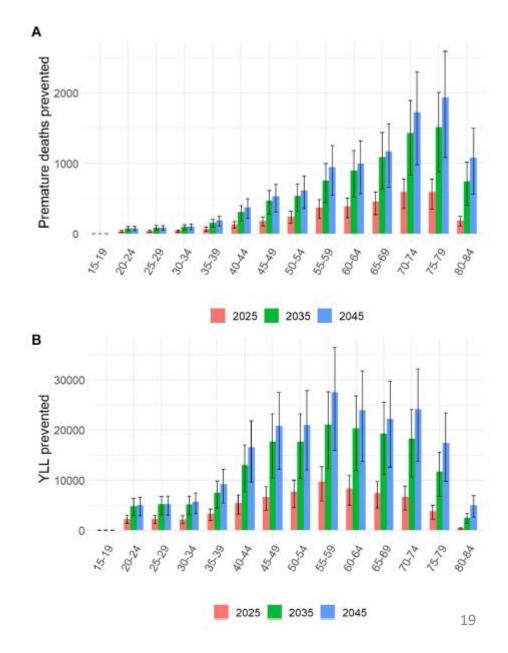
- 168min de marche/semaine = 11% de

 ✓ du risque de mortalité

Kelly et al, IJBN 2014

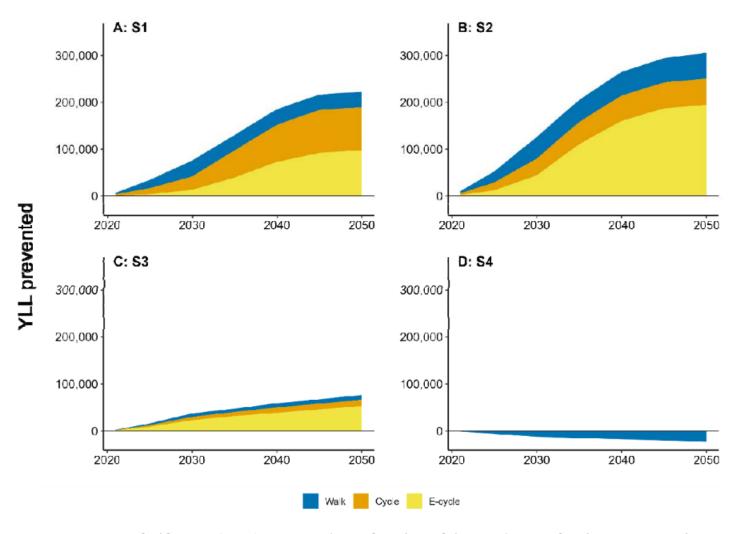
→ sur la morbidité:


Cancer du sein
Cancer du colon
Maladies cardiovasculaires
Démence
Diabète de type 2


Rojas-Rueda et al, Prev Med 2013

Indicateur	Estimations de base (Intervalle d'incertitude, UI)	Effet incrémentiel du report de 25% des trajets courts (<5 km) de la voiture au vélo (UI)	
Kilomètres parcourus en vélo, annuellement (milliards)	4,640 (3,284-5,996)	2,073 (1,864-2,314)	
Émissions de CO2 évitées (Mto)	0,575 (0,407-0,743)	0,257 (0,231-0,288)	
Nombre de décès évités	1,919 (1,101-2,736)	1,822 (1,010-2,633)	
Nombre de maladies chroniques évitées	5,963 (3,178-8,749)	3,410 (2,343-4,476)	
Nombre de DALY évités	35,135 (22,693-48,791)	19,493 (12,684-26,302)	
Coûts médicaux (tangibles) évités (millions €)	191 (98-285)	108 (71-144)	
Coûts intangibles évités (milliards €)	4,75 (3,02-6,49)	2,59 (1,69-3,50)	
Coûts intangibles évités pour chaque kilomètre parcouru à vélo (€)	1,02 (0,59-1,62)	1,25 (0,82-1,73)	

Dimension	Résultat	Valeur	Référence
Santé publique	Décès annuels évitables par le report de	Environ 1 800 décès	Présente étude
	25 % des courts trajets en voiture (<5	annuels	
	km) vers le vélo		
	Décès évités par les efforts en matière	Environ 1 500 décès	[44]
	de sécurité routière au cours des 10	annuels	
	dernières années		
	Décès évités annuellement en réduisant	Environ 1 500 décès	[55]
	la consommation d'alcool de 20 %	annuels	
Économie	Coûts médicaux (tangibles) annuels	Environ 100 millions	Présente étude
	évitables en reportant 25 % des courts	d'euros	
	trajets de la voiture (<5 km) vers le vélo		
	Coûts immatériels évités en déplaçant	Environ 2 600 millions	Présente étude
	25 % des courts trajets en voiture (<5	d'euros	
	km) vers le vélo		
	Budget annuel de l'Institut National du	118,5 millions d'euros en	https://www.e-cancer.fr/Institut-
	Cancer (INCa)	2023	national-du-cancer/Qui-sommes- nous/Budget
Climat	Émissions de CO2 évitées en déplaçant	Environ 0,25 MtO	Présente étude
	25 % des courts trajets en voiture (<5	annuellement	
	km) vers le vélo		
	Crédit d'impôt pour l'efficacité	Environ 0,12 MtO	[45]
	énergétique des ménages investissant	annuellement en 2015 et	
	dans la rénovation thermique	2016	
	domiciliaire		
	Émissions de CO2 évitées en réduisant la	Environ 1,45 MtO	[56]
	vitesse maximale sur l'autoroute de 130	annuellement	
	à 110 km/h		


La distribution des bénéfices

Scenarios	Frugal generation (S1)	Regional cooperation (S2)	Green technologies (S3)	Restoration gamble (S4)	Business-as- usual (BAU)
Decarbonation of the transport sector	A significant drop in transport demand. Modal shift and vehicle occupancy expand.	Modal shift at the heart of the transition. More vehicle occupancy and a decrease in transport demand.	Efforts are mainly applied to energy efficiency and decarbonation of the energy production.	Energy production and digital technologies drive the transition. Energy efficiency also improves.	Projection of our present lifestyles.
Evolution of per-capita transport distances from 2015 to 2050	Walk : +15 % Total cycle : +730 %	Walk: +25 % Total cycle: +1,007 %	Walk: +6 % Total cycle: +336 %	Walk : -8 % Total cycle : +92%	Walk : +1 % Total cycle: +92 %

139 Table 1. Transport sector and active mobility in ADEME's prospective scenarios

Figure 4. Years of Life Lost (YLL) prevented as a function of time and type of active transportation, under (a) scenario S1, (b) scenario S2, (c) scenario S3, and (d) scenario S4.